## Work by Olof Widlund's group a.k.a. NYU update

and

### Fast Solvers and Schwarz Preconditioners for high order discretizations of a Maxwell model problem

Bernhard Hientzsch

Courant Institute of Mathematical Sciences New York University

mailto:hientzsc@cims.nyu.edu
http://www.math.nyu.edu/~hientzsc

TOPS SciDAC Project All-hands Meeting Livermore, California January 25, 2002

### Our group

#### Paulo Goldfeld

(Balancing Neumann-Neumann)

#### Bernhard Hientzsch

(Maxwell & more)

Jing Li (FETI-DP for CFD)

Josè Cal Neto (FETI-DP for 4th order)

Olof Widlund ("everything")

#### Paulo Goldfeld: Balancing Neumann-Neumann

- Balancing Neumann-Neumann for
  - Incompressible Elasticity
  - Compressible Elasticity
  - Stokes
  - Navier-Stokes by Newton-Krylov (in progress)
  - Neumann-Neumann-like nonlinear preconditioner for global nonlinear problem (planned)
- Implemented in PETSc, run on large clusters such as Chiba City.
- Question: in PETSc LU for local Stokes or incompressible Elasticity breaks down with standard ordering, tricks needed. Other direct solvers (SuperLU)? Possibly adapted for saddle point structure?
- Most CPU time: factorization of the local problems at start-up. Iterative methods do not seem to be a viable alternative.
- Theory by Widlund and Pavarino

### Jing Li: FETI-DP

- FETI-DP for
  - Stokes
  - Oseen
  - Navier-Stokes by Newton-Krylov
  - FETI-like preconditioner for global nonlinear problem (planned)
- Sequential code in C++, implementation in PETSc planned.
- Theory by Li (2 short papers).

#### **Olof Widlund**

- Theory for
  - Neumann-Neumann
  - FETI-DP methods (paper with Klawonn and Dryja, to appear)
  - Mortar methods

**—** ...

- for
  - Stokes (paper just accepted)
  - Incompressible and Compressible Elasticity (almost complete paper)
  - -H(div), H(curl) (a few years ago)

**–** ...

• Nonlinear preconditioners (with: Xiao-Chuan Cai).

# Previous work in our group for H(div) and H(curl)

- Lower order (usually first) Nédélec elements
- Toselli: Overlapping Schwarz for  $H(\mathbf{curl})$  (2D, 3D)
- Toselli and Hiptmair: Multilevel for H(div) and H(curl)
- Toselli, Widlund, and Wohlmuth: Iterative substructuring for  $H(\mathbf{curl})$  (2D)
- Toselli: Neumann-Neumann for  $H(\mathbf{curl})$
- Toselli and Klawonn, Toselli and Rapetti: FETI for  $H(\mathbf{curl})$
- Wohlmuth, Toselli, and Widlund: Iterative substructuring for H(div) (2D,3D)

## Bernhard Hientzsch: High order Maxwell

- Fast direct solvers for rectangular domains.
- Direct substructuring methods for domains composed out of rectangular elements
- Helmholtz decomposition solvers
- Overlapping Schwarz methods
- Iterative substructuring methods (in progress), threedimensional implementation (in progress), ...
- Codes in MATLAB and some in C using MPI for parallelization.
- Theory by Hientzsch extending analysis by Toselli.

$$(\alpha u, v) + (\beta \operatorname{\mathbf{curl}} u, \operatorname{\mathbf{curl}} v) = f(v)$$

- Spectral Elements: Spectral Methods (high accuracy, special structure) + Finite Element Methods (geometric flexibility) + Numerical Integration
- Discretization Ku = Mf has block tensor product structure, allows fast computation of w = Kv, and, for rectangular domains, <u>fast direct solvers</u>. Those are needed as local solvers and global coarse solvers.
- Domain Decomposition approach leads to quasi-optimal and parallel methods for more complicated and larger examples.
- Preconditioners seem to be relatively robust with respect to moderate deformation of the geometry and mesh

### Spectral Nédélec Elements for H(curl)

- $\bullet$   $H^1$ -conforming elements: spurious eigenvalues and unphysical continuity conditions
- Nédélec [Num. Math. '80, '86]: H(curl) conforming elements, d.o.f.: edge, face and interior moments; Monk and others: hp-, hN-extension
- Ben Belgacem and Bernardi [Math. Comp. '99]: Spectral element method for Maxwell's equation.
- We use spectral element type nodal degrees of freedom, variable order Gauss-Lobatto-Legendre quadrature, only tangential continuity.
- We construct mapping between spectral element and Nédélec degrees of freedom for different degrees, and analyze the interpolation properties and the stability of the local splitting for the Nédélec interpolant.

### The model problem

• Maxwell in E:

$$\epsilon \partial_t^2 \mathbf{E} + \sigma \partial_t \mathbf{E} + \mathbf{curl} \left( \frac{1}{\mu} \mathbf{curl} \, \mathbf{E} \right) = \partial_t \mathbf{j}_i$$

• Implicit time integration:

$$\alpha \mathbf{u} + \mathbf{curl}(\beta \mathbf{curl} \mathbf{u}) = f$$

• Variational form:

$$(\alpha \mathbf{u}, \mathbf{v})_{L^2} + (\beta \operatorname{\mathbf{curl}} \mathbf{u}, \operatorname{\mathbf{curl}} \mathbf{v})_{L^2} = \mathbf{f}(\mathbf{v})$$

• GLL quadrature:

$$(\alpha \mathbf{u}, \mathbf{v})_{GLL} + (\beta \operatorname{\mathbf{curl}} \mathbf{u}, \operatorname{\mathbf{curl}} \mathbf{v})_{GLL} = \mathbf{f}_{GLL}(\mathbf{v})$$

• Discretized form on one element (2D):

$$\begin{pmatrix} M_1^x \otimes A^y & B^x \otimes C^y \\ B^{x,T} \otimes C^{y,T} & A^x \otimes M_2^y \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \tilde{f}_1 \\ \tilde{f}_2 \end{pmatrix}$$

• Subassembling on rectangular arrangement with appropriate degrees with tangential continuity gives system matrix of the same structure

### Modelproblem in 3D

Stiffness matrix has the form:

$$\begin{pmatrix}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{pmatrix}$$

$$C_{11} = M_x \otimes (\alpha M_y \otimes M_z + \beta (K_y \otimes M_z + M_y \otimes K_z))$$

$$C_{22} = P_{yxz}^{xyz} (M_y \otimes (\alpha M_x \otimes M_z + \beta (K_x \otimes M_z + M_x \otimes K_z))) P_{xyz}^{yxz}$$

$$C_{33} = (\alpha M_x \otimes M_y + \beta (K_x \otimes M_y + M_x \otimes K_y)) \otimes I_z$$

$$C_{12} = -D_x \otimes \tilde{D}_y \otimes M_z$$

$$C_{13} = -D_x \otimes M_y \otimes \tilde{D}_z$$

$$C_{21} = -\tilde{D}_x \otimes D_y \otimes M_z$$

$$C_{23} = -M_x \otimes D_y \otimes \tilde{D}_z$$

$$C_{31} = -\tilde{D}_x \otimes M_y \otimes D_z$$

$$C_{32} = -M_x \otimes \tilde{D}_y \otimes D_z$$

with M one-dimensional mass matrix, K one-dimensional Laplace, D and  $\tilde{D}$  combinations of derivative and mass matrices, P transposition of the 3D array.

### **Algorithms:**

- Direct block tensor solver
- Direct substructuring solver
- Algorithmic components for DDM
- Overlapping Schwarz Preconditioners
- Helmholtz decomposition solvers

#### **Direct block tensor solver (2D)**

• Eliminate one component in block tensor product system in both components to obtain generalized Sylvester matrix equation in one component

$$(A \otimes B + C \otimes D)u_i = f$$

- Solve Sylvester matrix equation by:
  - Transformation to special form, use fast diagonalization method [Lynch et al, Num. Math '64] (sometimes ill-conditioned eigensystems)
  - Work on generalized Sylvester equation, use Hessenberg or Schur forms [Gardiner et al, ACM TOMS '92, Kågström, Poromaa ACM TOMS '96]
- Setup takes  $O(n^3)$  time, per right hand side  $O(n^{d+s})$  with  $s \in [0,1]$  depending on the fast matrix-matrix multiplication used.

### **Direct substructuring solver**

- Form local Schur complements
- Subassemble local Schur complements to Schur complement system on tangential components on element interfaces
- Subassemble right hand side for the Schur complement system on the interfaces
- Solve the Schur complement system on the interface
- Compute interior values in each spectral element by one tangential value boundary problem solve per element

## Domain decomposition methods: algorithmic components

- Compute residual
- Solve local problems with different boundary conditions
- Solve low-order global problem

For direct and iterative substructuring methods:

- Form local Schur complement
- Compute right hand side for Schur complement system
- Apply local Schur complement or its inverse to a vector

## Overlapping Schwarz method: implementation in 2D

• Define overlapping subregions  $\Omega'_{i,\delta} \subset \Omega$ . Several ways: extending coarse elements or subdomains, or vertex-centered. Most of our computations:  $2 \times 2$  vertex centered domain decomposition.



- Local spaces and solvers: take basis functions associated to GLL points in  $\Omega'_{i,\delta}$  (submatrix). Elementwise-overlap: standard tangential value solve on 2x2 elements.  $V_i \subset \mathbb{ND}_N^{II,0}(T_H)$ .
- Coarse space: low-order (spectral) Nédélec elements.  $V_0 = \mathbb{ND}_{N_0}^{II,0}(T_H)$

# Overlapping Schwarz method: overlapping subregions

Vertex centered domain decomposition:



### Helmholtz decomposition solvers

- $f = (\alpha I + \beta \operatorname{\mathbf{curl}} \operatorname{\mathbf{curl}})u$
- Use  $f = cf(f) + df(f) = \operatorname{grad} q + \operatorname{curl} \Phi$ , q scalar,  $\Phi$  scalar (2D), vector (3D)
- On cf(u) operates as  $\alpha I$ , on df(u) operates as  $\alpha I + \beta \Delta$ .
- Suggests method like: compute cf(f) (Laplace), compute  $cf(u) = \frac{1}{\alpha}cf(f)$ , find df(u) by solving Helmholtz-type equation on components (2D,3D) or potential (2D) with appropriate b.c.
- For some boundary conditions (e.g., natural), this gives in 2D a spectrally convergent solver (numerically); for others (f.i. essential = tangential), only algebraic convergence (corner and edge effects) which can be improved but not (yet?) made exponential

### Some numerical examples

- Rectangular domain: convergence, some timings
- L-shape domain: direct substructuring solver
- Overlapping Schwarz Preconditioners: results for one- and two-level methods

### Direct solvers: Rectangular domain

 $5 \times 5$  spectral elements, degree:  $(N \times N, N \times N)$ . Different numerical integrations for the mass matrix: exact integration and diagonal mass matrix. Block tensor and Interface Schur complement solvers.



# Direct methods: Timings, block tensor solver

 $5 \times 5$  spectral elements of degree N. Exact element matrices.



## Direct methods: Timings, block tensor solver

 $M \times M$  spectral elements of degree  $10 \times 10$ . Exact element matrices.



## Direct methods: Timings, Schur interface solver

 $5 \times 5$  spectral elements of degree N. Exact element matrices.



## Direct methods: Timings, Schur interface solver

 $M \times M$  spectral elements of degree  $10 \times 10$ . Exact element matrices.



## Direct methods: Summary of comparison (rectangular domain)

- Increasing N: in exponential convergence indistinguishable, for larger N Schur solvers slightly more accurate.
- Schur solver: out of memory at M=10 and N>10. Tensor solver runs in memory for much larger examples.
- Tensor solver: most time in subassembling, computing eigenbases and inverses. Actual solve is very fast (< 2s for N = 50, M = 5, < 1s for M = 10, N = 10)
- Schur solve: most time in computing rhs, solving Schur system and local systems. (Needs to be done for each rhs.)
- Block tensor solver twice as fast, per rhs seven times as fast for N=50, M=5. 20 times as fast at M=10, N=10, per rhs more than 100 times as fast.

## Schur interface solver on L-shaped domain

#### Exact solution:



GLL grids with interface degrees of freedom marked by 'x', for degree 10:





## Schur interface solver on L-shaped domain

Error of the solution, for degree 10:



Maximum error of the solution over degree N of the spectral elements:



### Overlapping Schwarz method: Numerical results in 2D

Comparison of different methods for  $\alpha=\beta=1$ , M=N=10:

| # of levels     | iter | $\kappa_{est}(K)$ | $  \operatorname{error}  _{\infty}$ | $t_{CPU}$ in s |
|-----------------|------|-------------------|-------------------------------------|----------------|
| (no pc)         | 3580 | 1.44e+06          | 5.73e-05                            | 448.6          |
| one             | 31   | 38.2              | 3.21e-06                            | 7.6            |
| two $(N_0 = 2)$ | 15   | 4.93              | 3.78e-06                            | 3.8            |
| two $(N_0 = 3)$ | 15   | 4.52              | 9.95e-07                            | 3.8            |
| two $(N_0 = 4)$ | 15   | 4.51              | 9.48e-07                            | 3.9            |
| two $(N_0 = 5)$ | 14   | 4.49              | 1.88e-06                            | 3.8            |

### Overlapping Schwarz method: Results for one-level methods

One-level method, using  $2 \times 2$  vertex centered domain decomposition, varying number of spectral elements of degree  $10 \times 10$ :



### Comparison of different methods for the $2\times 2$ vertex centered domain decomposition for $\alpha=\beta=1$ , N=10.

| # of levels     | iter | $\kappa_{est}(K)$ | $  \operatorname{error}  _{\infty}$ | $t_{CPU}$ in s |  |  |  |
|-----------------|------|-------------------|-------------------------------------|----------------|--|--|--|
| M = 20          |      |                   |                                     |                |  |  |  |
| one             | 58   | 142.9             | 2.05e-06                            | 74.4           |  |  |  |
| two $(N_0 = 2)$ | 15   | 4.84              | 1.46e-06                            | 19.6           |  |  |  |
| two $(N_0 = 3)$ | 14   | 4.84              | 1.49e-06                            | 18.9           |  |  |  |
| two $(N_0 = 4)$ | 15   | 4.85              | 5.56e-07                            | 20.7           |  |  |  |
| M = 30          |      |                   |                                     |                |  |  |  |
| one             | 85   | 316.0             | 1.59e-06                            | 251            |  |  |  |
| two $(N_0 = 2)$ | 15   | 4.91              | 1.03e-06                            | 47.2           |  |  |  |
| two $(N_0 = 3)$ | 15   | 4.93              | 3.74e-07                            | 47.7           |  |  |  |
| two $(N_0 = 4)$ | 15   | 4.93              | 3.11e-07                            | 49.7           |  |  |  |
| M = 40          |      |                   |                                     |                |  |  |  |
| two $(N_0=2)$   | 15   | 4.95              | 7.24e-07                            | 98.3           |  |  |  |
| two $(N_0 = 3)$ | 15   | 4.96              | 2.66e-07                            | 102.2          |  |  |  |
| two $(N_0=4)$   | 15   | 4.96              | 2.15e-07                            | 106.0          |  |  |  |

### Overlapping Schwarz method: Results for two-level method

Two-level method, using  $2 \times 2$  vertex centered domain decomposition, varying number of spectral elements, degree  $10 \times 10$ ,  $N_0 = 3$ .





### Overlapping Schwarz method: Results for two-level method

Two-level method, using  $2 \times 2$  vertex centered domain decomposition,  $10 \times 10$  spectral elements, degree  $N \times N$ ,  $N_0 = 2$ .





### Domain decomposition methods: condition number bound

### Fixed and generous overlap:

$$\kappa(T_{as2}) \le C(N_c + 1)^2 \frac{\max(\alpha, \beta)}{\min(\alpha, \beta)}$$

### Minimal overlap:

(vertex-centered:  $\delta/h \sim N^{-1}$ ,  $\gamma \leq 0.5$ , extended subdomain:  $\delta/h \sim N^{-2}$ ,  $\gamma \leq 1$ )

$$\kappa(T_{as2}) \le C(N_c + 1)^2 N^{\gamma} \frac{\max(\alpha, \beta)}{\min(\alpha, \beta)} \left(1 + \left(\frac{H}{\delta}\right)^2\right)$$

Limit cases  $\alpha \to 0$  and  $\beta \to 0$  allow different bounds, independent of  $\alpha$  or  $\beta$ , respectively.

#### **Proof of the condition number estimate**

- Uses the abstract Schwarz method framework [e.g., Smith et al '96]
- We use exact solvers, implying  $\omega = 1$ .
- Largest eigenvalue is bounded by number of colors  $N_C$  for overlapping subdomains (4 in the  $2 \times 2$  case) plus one.
- Only part requiring work and thought: lower bound for smallest eigenvalue. Done by exhibiting splitting  $\mathbf{u} = \sum \mathbf{u}_i$ and estimating (from above)  $C^2$  in  $\sum a(\mathbf{u}_i, \mathbf{u}_i) \leq C^2 a(\mathbf{u}, \mathbf{u})$
- Extension of Toselli [Numer. Math. '00] to spectral case (i.e., N-dependence)

### Condition number estimates: required estimates

We reduced the N-dependence in the condition number estimate to the following three required estimates:

• Interpolation estimate on div-free H(curl) with polynomial curl:

$$||(I - \boldsymbol{\Pi}_N^{ND,I})\mathbf{w}||_0 \leq Chf_1(N)||\operatorname{\mathbf{curl}}\mathbf{w}||_0$$

•  $L^2$ -stability of local splitting:

$$||\mathbf{\Pi}_N^{ND,I}(\chi_i \mathbf{u})||_0 \le Cf_2(N)||\chi_i \mathbf{u}||_0$$

• curl-stability of local splitting:

$$||\operatorname{\mathbf{curl}}\left(\mathbf{\Pi}_N^{ND,I}(\chi_i\mathbf{u})\right)||_0 \leq Cf_3(N)||\operatorname{\mathbf{curl}}(\chi_i\mathbf{u})||_0$$

implied by  $L^2$ -stability of local splitting in a RT type space.

### Domain decomposition methods: condition number bound

- $f_1(N) = 1 + C(\epsilon)N^{-1+\epsilon} \le 1 + C(\epsilon)$ . In two dimensions, and possibly (unproven) in three dimensions,  $f_1(N) = C(\epsilon)N^{-1+f(\epsilon)}$ .
- For generous overlap  $f_2(N) = f_3(N) = 1$  (analytic and numerical result).
- For minimal overlap  $\delta/h \sim N^{-2}$ ,  $f_2(N) = f_3(N) = N^{\gamma}$ , with  $\gamma \leq 1$  (numerical result).

Inverse of smallest eigenvalue is bounded by:

$$\max \left( CN_c \left( 1 + \frac{H}{\delta} \right), C\frac{\max(\alpha, \beta)}{\min(\alpha, \beta)} (1 + N_c f_2^2(N)), \\ C\frac{\max(\alpha, \beta)}{\min(\alpha, \beta)} \left\{ 1 + N_c f_3^2(N) \left( 1 + \left( \frac{H + h f_1(N)}{\delta} \right)^2 \right) \right\} \right).$$

In the moment we run extensive numerical tests to empirically determine the exponents of N and  $\frac{H}{\delta}$  in the condition number, and try to prove the  $f_2$ ,  $f_3$  result for small overlap.

#### Work in progess, planned extensions

- Improve theory, prove more estimates.
- Implementing and analyzing other domain decomposition methods, such as iterative substructuring methods and *mortar elements*.
- Extending methods to three dimensions.
- Extend methods to jumping or seperable or tensor  $\alpha, \beta$ .
- Numerical tests for complex case, radition boundary conditions, indefinite case or high wave number.
- Implementation of mapped spectral elements.